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Much attention has been paid to the molecule-based
magnetic materials in the past decades.1 The azide
ligand is a suitable candidate for the design of magnetic
coordination polymers because of its good superex-
change pathway.2 Its end-to-end (EE) and end-on (EO)
coordination modes favor antiferromagnetic and ferro-
magnetic interactions, respectively. Furthermore, the
magnetic properties can be tuned by modifying the bond
parameters of the bridging region. The high-dimensional
networks are of particular interest, as it is believed that
the bulk magnetic properties can be enhanced by
increasing the dimensionality. One of the synthetic
strategies to high-dimensional azides is to increase
the number of azide ligands by adding a countercation,
such as in Csn[Mn(N3)3]n,3 [N(C2H5)4]n[Mn2(N3)5(H2O)]n,3
Cs2n[Co3(N3)8]n,4 Cs2[Ni(N3)4]‚H2O,4 and [N(CH3)4][Mn-
(N3)3].5 Another is the introduction of a second bridging
ligand to extend the architectures such as in [Mn2(N3)4-
(bipym)]n

6 and [MnL(N3)2]n (L ) 4,4′-bipy,7 pyrazine,8
1,2-bis(4-pyridyl)ethane9). Using the latter approach, we
succeeded in assembling a three-dimensional (3D) net-

work, Mn(N3)2(pzdo) (1), through azide and pyrazine-
dioxide (pzdo) ligands. Its structure and magnetic
properties are presented herein.

The reaction of MnCl2, NaN3, and pyrazine-dioxide
in aqueous solution affords red prismatic crystals of Mn-
(N3)2(pzdo).10 X-ray diffraction analysis revealed that it
consists of a 3D network in which Mn2+ ion is located
on an inversion center and octahedrally coordinated to
four azido and two pzdo ligands in a trans arrange-
ment.11 The axial Mn-N3a distance is 2.2505(15) Å,
slightly longer than the equatorial Mn-N1 2.1714(14)
Å and Mn1-O1 2.1884(11) Å. Azide ligands connect
Mn2+ ions in an EE mode, giving a two-dimensional (2D)
quadratic layer in the bc plane, as shown in Figure 1a,
where the intralayer Mn‚‚‚Mn separation is 6.0052(9)
Å. The pzdo ligand, adopting a trans bridging mode,
further extends the 2D sheet into a 3D network, as seen
in Figure 1b. The 2D quadratic layer structural topology
was known for thiocyanato(SCN)-Mn [Mn(SCN)2(CH3-
OH)2]n

12 and dicyanamide(dca)-Mn [Mn(dca)2(C2H5-
OH)2]‚(CH3)2CO13 and other azido-Mn compounds,
[Mn(minc)2(N3)2]n (minc ) methylisonicotinate)14 and
[Mn(4-acetylpyridine)2(N3)2]n

15 in which the layers are
well isolated by pyridinyl ligands with interplane
Mn‚‚‚Mn distances of 11.8-12.42 Å. While the inter-
layer Mn‚‚‚Mn separation through bridging pzdo is
8.3392(4) Å in compound 1, the nearest interlayer
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Mn‚‚‚Mn separation is indeed much smaller, say only
6.422 Å, owing to the angular connection mode for
the pzdo ligands, unlike the linear mode of pyrazine or
4,4′-bipy. The bridging azido is almost linear with the
N1-N2-N3 angle of 178.63(17)°. The bond angles of
Mn-N1-N2 and Mn1b-N3-N2 are 136.58(12)° and
119.76(12)°, respectively, smaller than those observed
in 3D [N(CH3)4][Mn(N3)3] (165° and 135°, respectively),
3D [Mn(4,4′-bipy)(N3)2]n (152.9° and 128.5°, respec-
tively), and 2D [Mn(4-acetylpyridine)2(N3)2]n (129.4°-
152.9°). The torsion angle Mn-N-N-N-Mn, defined
as the dihedral angle between the planes formed by the
atoms Mn1-N1-N2-N3 and Mn1D-N3-N2-N1, is
143.05°. Therefore, the intralayer Mn‚‚‚Mn separation,
6.0 Å, is also smaller than 6.4 Å in 3D [N(CH3)4][Mn-
(N3)3]. Overall, the 3D arrangement in 1 may be roughly
described as a cubic-like network with Mn‚‚‚Mn separa-
tions 6.0, 6.0, and 6.4 Å in three directions.

ESR measurements for polycrystalline samples at
room temperature show an isotropic signal at g ) 2.00.
The signal becomes sharp and intense at 77 K and does
not change in shape significantly. This fact indicates
that the octahedral environment of the Mn2+ ion does
not alter with temperature.

The variable-temperature magnetic susceptibility for
a collection of small crystals was measured in the
temperature range of 1.8-300 K under different applied
fields (Figure 2). The magnetic susceptibility, øM, in-
creases as the temperature is lowered, reaching a
maximum of 0.024 cm3 mol-1 at ca. 68.5 K and then
sharply goes down to the value of 0.004 cm3 mol-1 at
1.8 K. This is neither the normal expected value (0.016
cm3 mol-1) of about 2/3 the maximum value for a powder
sample of a 3D antiferromagnet nor zero, which may
arise from the irregular orientation of the small crystals.
The øMT value at room temperature is 3.75 cm3 mol-1

K, smaller than the value (4.38 cm3 mol-1 K) expected
for an uncoupled Mn2+ ion. It decreases smoothly with
decreasing temperature and finally approaches zero.
The magnetic data above 110 K can be fitted well
to the Curie-Weiss law with C ) 5.67 cm3 mol-1 K and
θ ) -149.4 K, indicating a considerably strong anti-
ferromagnetic (AF) coupling. The Neel temperature, TN,
of complex 1 was determined as the sharp peak of
d(øMT)/dT at 62 K shown in the inset of Figure 216 and
further evidenced by the in phase of zero field ac
magnetic susceptibility ø′(T), which has a maximum at
ca. 63 K under Hac ) 5 Oe and frequencies of 111, 199,
355, 633, and 1111 Hz. No frequency dependence was
observed.

The fitting using a model17 for a quadratic layer did
not give a satisfactory result. That is, interaction
mediated via the pyrazine-dioxide could not be negli-
gibly small. Therefore, on the basis of the structural
analysis, the high-temperature magnetic susceptibility
of this compound may be explained by the model
developed by Rushbrook and Wood for a Heisenberg
antiferromagnet on a simple cubic lattice with the
exchange Hamiltonian H ) -2JΣ〈i,j〉Si‚Sj,18 namely,

with x ) J/kT and C1 ) 35, C2 ) 221.67, C3 ) 608.22,
C4 ) 26 049.66, C5 ) 210 986, and C6 ) 8 014 980. The
best fitting of the magnetic data above 110 K using eq
1 gives J ) -1.16 cm-1 and g ) 2.03, in good agreement
with the result from the ESR measurements. The J
value is also comparable with -1.74 cm-1 for another
3D compound, [N(CH3)4][Mn(N3)3].5

The field dependence of the magnetization at different
temperatures below TN shows a pronounced sigmodial
shape, especially at lower temperature (Figure 3). The
behavior is due to a spin-flop transition, which occurs
if the Ising-like anisotropy is small compared to the
weakest antiferromagnetic interaction, and this is the
case for the present Mn2+ compound 1. The magnetiza-
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Figure 1. (a) A 2D sheet formed by µ-1,3-azido bridges. (b)
Schematic view of a three-dimensional network of 1.

Figure 2. Plot of øM versus T at 10 kOe (0) and 500 Oe (O)
for 1. The solid line corresponds to the best fit of the data.
Inset: d(øMT)/dT versus T.
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tion below TN increases very slowly with increasing field
due to considerably strong antiferromagnetic 3D inter-
actions among Mn2+ ions and then increases quickly for
a transition from an antiferromagnet to a spin-flop
state at a transition field around 35-42.5 kOe, depend-
ent on the measured temperature (inset of Figure 3).19

When the temperature is higher than TN, the curve of
magnetization vs field is close to a line, indicative of a
paramagnetic state. The magnetization is only 0.29 Nâ
at 70 kOe, far from the saturation value of the Mn2+

ion, which suggests again a strong 3D antiferromagnetic

ordering. The spin-flop transition itself demonstrates
that the anisotropy interaction, probably produced by
a stronger intralayer (in an ab plane) interaction
through azido in comparison with the interlayer inter-
action through pzdo, should be quite weak. This might
be the reason for the good fitting between the experi-
mental susceptibility data and a 3D cubic AFM model.

One of the reported 2D analogues, Mn(N3)2(pyz),
exhibited ferro- and antiferromagnetic interactions via
µ-1,1-N3, and µ-pyz bridges, respectively,8 and showed
a lower magnetic ordering temperature (TN ) 2 K). In
this work, substituting pyz with pzdo not only provides
a three-dimensional network 1 but also yields a higher
temperature antiferromagnet (TN ) 62K) with a spin-
flop transition. Further investigation on a single-crystal
sample is underway.
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Figure 3. Magnetization versus applied field at different
temperatures. Inset: dM/dH vs H.
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